
home thoughts 2019 02 01 dotfile-madness

Dotfile madness

We are no longer in control of our home directories.

My own home directory contains 25 ordinary files and 144 hidden files. The dotfiles contain data that doesn't belong to me: it

belongs to the programmers whose programs decided to hijack the primary loca�on designed as a storage for my personal files.
I can't place those dotfiles anywhere else and they will appear again if I try to delete them. All I can do is sit here knowing that

in the darkness, behind the scenes, they are there. Wai�ng in silence. Some of those programmers decided to addi�onally place

some normal files and directories in the same place. Those are clearly visible every �me I execute ls in my home directory. It is

beyond me why my home directory ended up up containing a node_modules directory, package-lock.json, a yarn.lock

file (I have never even consciously used yarn!), some 2 strange log files origina�on from some Java so�ware clearly using an H2

database, and a Desktop directory. That last one has been created by Steam, which is quite unfortunate as I simply do not

have a desktop or a desktop environment on my machine. I dread the day in which I will hear a loud knock on my door and one

of those programmers will barge in informing me that he is going to store a piece of his furniture in the middle of my living

room, if I don't mind.

To those of you reading this: I beg you. Avoid crea�ng files or directories of any kind in your user's $HOME directory in order to
store your configura�on or data. This prac�ce is bizarre at best and it is �me to end it. I am sorry to say that many (if not most)

programs are guilty of doing this while there are significantly be�er places that can be used for storing per-user program data.

Even if we will never be able to solve this problem - due to the historical baggage, backward compa�bility, so�ware no longer

receiving updates or programming villains storing the files wherever they want just to see the world burn - we can at least try to

follow some sane prac�ces. While the mistake of introducing the mere concept of a "hidden" file can't be undone anymore, we
can at least try to mi�gate its results.

This par�cular problem has been no�ced and solved a long �me ago with the crea�on of XDG Base Directory Specifica�on.

The specifica�on defines a set of environment variables poin�ng programs to a directory in which their data or configura�on

should be stored. It is up to the user to set those variables so if the variables are not available the programs are expected to

default to a directory defined by the standard and not the user's home directory.

User-level variables

$XDG_DATA_HOME

$XDG_DATA_HOME defines the base directory rela�ve to which user specific data files should be stored. If

$XDG_DATA_HOME is either not set or empty, a default equal to $HOME/.local/share should be used.

Example usage: storing plugins downloaded by the user, databases created by your program, user's input history, bookmarks,

emails, and so on.

$XDG_CONFIG_HOME

$XDG_CONFIG_HOME defines the base directory rela�ve to which user specific configura�on files should be stored. If

$XDG_CONFIG_HOME is either not set or empty, a default equal to $HOME/.config should be used.

https://0x46.net/
https://0x46.net/thoughts/
https://0x46.net/thoughts/2019/
https://0x46.net/thoughts/2019/02/
https://0x46.net/thoughts/2019/02/01/
https://0x46.net/thoughts/2019/02/01/dotfile-madness/
https://web.archive.org/web/20171003124306/https://plus.google.com/+RobPikeTheHuman/posts/R58WgWwN9jp
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

You should use this directory to store user-specific configura�on files for your program. You will most likely want to create a

default configura�on file with sane and sensible default values the first �me your program is executed.

$XDG_CACHE_HOME

$XDG_CACHE_HOME defines the base directory rela�ve to which user specific non-essen�al data files should be stored. If

$XDG_CACHE_HOME is either not set or empty, a default equal to $HOME/.cache should be used.

Example: caching thumbnails generated by your file manager, songs that the user of a music straming so�ware is o�en listening

to, and so on. Your program should con�nue to func�on without any problems if this directory is removed by the user. Ensure

that the files that are no longer needed are properly removed. Remember that exceeding the sensible amount of storage space

used by your files will most likely upset the user who will quickly track down your program as a culprit.

$XDG_RUNTIME_DIR

$XDG_RUNTIME_DIR defines the base directory rela�ve to which user-specific non-essen�al run�me files and other file

objects (such as sockets, named pipes, ...) should be stored.

The specifica�on lists a series of requirements that have to be fulfilled by this directory. As described by the specifica�on you

should use this directory to store sockets and similar files used for communica�on.

System-level variables

$XDG_CONFIG_DIRS

$XDG_CONFIG_DIRS defines the preference-ordered set of base directories to search for configura�on files in addi�on to

the $XDG_CONFIG_HOME base directory. The directories in $XDG_CONFIG_DIRS should be seperated with a colon ':'.

If $XDG_CONFIG_DIRS is either not set or empty, a value equal to /etc/xdg should be used.

This directory should be used for storing system-wide configura�on files that can be overwriten by user-specific configura�on

files. This directory would most likely be populated during the installa�on process.

$XDG_DATA_DIRS

$XDG_DATA_DIRS defines the preference-ordered set of base directories to search for data files in addi�on to the

$XDG_DATA_HOME base directory. The directories in $XDG_DATA_DIRS should be seperated with a colon ':'.

If $XDG_DATA_DIRS is either not set or empty, a value equal to /usr/local/share/:/usr/share/ should be used.

Example: storing plugins or themes that can be used by all users of your program. This directory would most likely be populated

during the installa�on process.

How does this work in prac�ce?

Using the standard is very simple. Read the relevant environment variable and use the default paths defined by the standard if it
is missing. You should then append a program-specific directory name to it and create the en�re directory tree to store your

data.

As an example if you were to store configura�on files you should use $XDG_CONFIG_HOME/your-program as your base

configuraion directory instead of just storing your files directly in $XDG_CONFIG_HOME. Remember to never hardcode the

directories to the default values defined by the standard. Read the environment variable first to allow the user to move those
directories if needed.

You can easily migrate your exis�ng programs to use this standard. In order to do so start using the standard when crea�ng

new files but keep also checking the old loca�on of the files when reading them. This will allow you to migrate without breaking

the program for the users with the configura�on or data files that were created by a previous version of your program.

Read the standard to find out more and have a look at the directory hierarchy which is almost certain to be already present in
your home directory. In reality a cross-pla�orm library allowing you to get a directory for storing your data will be available for

your programming language of choice. On Linux and similar systems, this library will surely use the XDG Base Directory

Specifica�on.

2019-02-01

feed:atom feed:rss

https://0x46.net/thoughts/feed.atom
https://0x46.net/thoughts/feed.rss

